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Al in Civil Engineering

= About the Al models, data-driven type especially
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Al in Civil Engineering

= Get geometry
» Lidar
» Photogrammetry

Al in Civil Engineering

» Dealing with the inaccessible regions
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Al in Civil Engineering

»= Understand the components

Generate data to train models for civil structures

» Hard to collect real-world data

> No good pre-trained models

Al in Civil Engineering
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Al in Civil Engineering

= Material
Step 75 (Drift = 0.139%)

Al in Civil Engineering

= Material
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Al in Civil Engineering
What is digital twin?
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Vision-Based Seismic Risk Assessment

» Why do we want to use UAV for the seismic risk assessment
» Easy to deploy for regular and post-disaster inspections.
» Accurate data for Missing shop drawings or as-built structures.
» Rapid data acquisition

» Integrated into a general framework for seismic risk assessment

Vision-Based Seismic Risk Assessment
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Vision-Based Seismic Risk Assessment
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Vision-Based Seismic Risk Assessment
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Vision-Based Seismic Risk Assessment

3D Reconstruction
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Vision-Based Seismic Risk Assessment
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Vision-Based Seismic Risk Assessment

3D Reconstruction

2)

Acquisition

Survey setup

>

O]

Elaboration

3D reconstruction

<)

Output

@ Feature extraction
o

| 7. Mesh reconstruction |
| 8 3D model and phots phic dataset |

|4. Image optimization
|5‘ SFM-MVS algorithms: 3d point cloud

| 1. Preliminary design of the mission
‘2. Flight plan sctup |
tion

L e B IMAGES 15 ]
x3000 =
;] H
SR |gegneriaBridge Grid_711 2
H
811 minutes ago
—— = " =
IngegneriaBridge Grid_715
: . = 8 9 minutes ago g
v iy
WL T - H
| IngegneriaBridge Grid_728

B S0 O4minutes ago i
-“ IngegneriaBridge Grid_75 E
s
T 3
3
© 0BJECTS 7 ]
&
® Deck ! ® =
Pler s o i
o
Pier 2 © -E
Pier ’ © 3
S Pier Cap © ;
§

Diar fan ©

Vision-Based Seismic Risk Assessment
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Vision-Based Seismic Risk Assessment

Using analytical models to calculate load capacity and
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Vision-Based Seismic Risk Assessment

Monte Carlo simulation to account for

the uncertainties
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Data-Driven Model

Model
Interpretation

_

Decision Making

Data-driven Seismic Fragility Curve

Parameter Symbol Range Parameter Symbol Range
Width b 1-4m Web thickness ty 02-04m
Depth h 1-4m Yield stress of steel fy 300 -500 MPa
Concrete cover thickness c 30 mm Yield stress of concrete fe 15 - 45 MPa —_
Topmost to bottommost steel distance  d ~ 0.97-3.97m  Normalized axial load ng 1-4%
Longitudinal reinforcement ratio ps  0.25-1.25%  Transverse reinforcement ratio  p,,, 0.04 - 0.16%
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. gotl
s I
Dataset of Iy
displacement «— puyandCoV PR a0
capaciy P % i
distributions —— = e
ux and CpV’ PR é é




10/6/2024

Data-driven Seismic Fragility Curve

Genetic Programming
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Photogrammetry CFD
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Photogrammetry CFD
A general setup for a boundary-fitted CFD analysis
10 2 0 Basic Requirements:
i (ﬂf;:;ﬂ;fzim H_{ﬁ - A CAP file of the structure geometry is
required
5 e x rofngmentix - Need clean features to make the boundary-

fitted mesh

Ty, lhﬁcﬁv (i é’:ﬁo o
Orm o b 4,
I » Limits:
1 23 1 - Time-consuming and labor-intensive model-
¥ e = preparing process

e ™ - Hard to get up-to-date CAD files and
—k//’—; geometry information
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Photogrammetry CFD

Increase resolution: W, x i, = W, x I,

Reduce hypothesis plane number: D, = Dy,

H : Variance Original
,)Am
Input Image e
(origi?tal resoglution) N Feature Volumes Cost Volume  Probability Volume Output

Depth Map

3 Channels
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8 Channels @ Hx I

32-Channel
Feature Map

Input Image 1 L L " e Y
Filter Size: 3X3 LAYERI LAYER2 LAYER3 LAYER4 LAYERS LAYER6

Type 1 Type | Type 2 Type | Type | Type 2
Typel  Typed
Type 1:2D lution layer with batch lization layer and rectified linear (ReLU) activation, stride=1, filter size: 3x3
Type 2:2D ion layer with batch: lization layer and rectified linear (ReLLU) activation, stride=2, filter size: 5x5

Type 3: 2D convolution layer, stride=1, filter size: 1x1

Photogrammetry CFD
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Photogrammetry CFD

Photogrammetry CFD
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Photogrammetry CFD

Photogrammetry CFD
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Another Interesting Example

= The final target is obtaining the mechanical behaviors (distortion and stress)

of the specimen

= Combination of neural network and commercial software (Abaqus)

Another Interesting Example

Physics-driven part:
Mechanical Behavior
Simulation

Coordinates

I

—

-

Abaqus Model

Nodes in C3D20 |

FEM (Abaqus)

Data-driven part:
Temperature field
reconstruction

Temperature
Sequence

Well-trained
Network Models
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Another Interesting Example
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Another Interesting Example
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( Coupling-Driven ] [ Pure Physics-driven ]

Conclusion

Q Al applications in Civil Engineering are promising

O Computer vision methods can be useful for constructing the models of structures in the
digital realm

Q More developments for applications are expected in the future

Q Although we have made some exciting progress, the Al application in Civil Engineering is
still at a relatively early stage.
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Conclusion

Data
Sufficient amount and good quality

v

Selected Machine Learning Models

v

Al Applications Now... He can dribble,

jump shots, layup
In five years... hard to
guard himin 1 on 1 game
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Thank You!




